
MXE 432 First semester 2018/2019 1

University of Jordan

School of Engineering

Department of Mechatronics Engineering

Microprocessor and Microcontroller Laboratory / 0908432

Lab Manual

MXE 432 First semester 2018/2019 2

Table of Contents

 Introduction to the Lab…………………………...………………………. 1

Exp.1:- MPLAB Basics (1)………………….. ……………………………………. 4

Exp.2:- MPLAB Basics (2) ……………………………..…………………………. 7

Exp.3:- Implementing Instructions (I)…………………………………………. 14

Exp.4:- Implementing Instructions (II)……………………………………….. 19

Exp.5:- Basic Programming……………………………………………………….. 26

Exp.6:- Frequency Measurement……………………………………………….. 31

Exp.7:- Serial Communication…………………………………………………. 39

Exp.8:- Serial with A/D protocol-based transmission…………………… 43

Exp.9:- PWM…………………………………………………………………………….. 49

Exp.10:- Interfacing with PIC……………………………………………………….. 56

MXE 432 First semester 2018/2019 1

University of Jordan

School of Engineering

Department of Mechatronics Engineering

Microprocessor and Microcontroller Laboratory

0908432

 Introduction to the Lab

Administrative Policy of the Laboratory

1) You are not allowed to smoke, eat, or drink in the Laboratory. You are expected to conduct yourself

professionally, and to keep your bench area clean and neat.

2) MXE432 is a time controlled closed lab, therefore, you are expected to write and test your code or

build your circuit in the lab within the allotted time. You cannot write and test the code or build

the circuit ahead of time. However, make sure to solve and bring all prelab material before hand.

3) Lab reports must be submitted at the beginning of the next experiment only. No reports will be

accepted after that time.

4) You can discuss the experiment and the results with your colleagues, but each student must submit

her/his own personally written report. Cheating and copying of reports is strictly prohibited and

will be taken very seriously. The student will earn a ZERO in the lab when caught.

5) All questions should be solved in order. Moreover, each student is expected to demonstrate her/his

solution fully and clearly whenever required.

6) No one can leave the lab until she/he has cleaned and arranged her/his bench and turned off the PC

she/he used.

7) Always ask your instructor to check your setup before turning the power on.

8) The above mentioned polices should be strictly followed. Note that disregarding any of the rules

above will seriously affect your grade!

9) Makeup Midterm: There will be no make-up for the midterm. In case of medical/ or other

disabling emergencies, the instructor should be notified before the midterm and his approval for

missing the midterm should be obtained before the midterm. If for any reason the instructor could

not be reached, the department secretary should be notified before the midterm. The phone number

is 535-5000 Extension 23025

10) Grading Corrections: Ask the instructor for any grading correction requests within a week of

returning the report/exam/quiz papers. After that, your grade will not be adjusted. If you find any

mistake in grading, please let the instructor know. Your grade will not be lowered.

11) Class Attendance: Class attendance will be taken. University regulations regarding attendance will

be strictly enforced.

MXE 432 First semester 2018/2019 2

Prelab and Report Instructions:

✓ Some experiments contain requirements that need to be prepared before coming to the lab.

✓ You are required to prepare all prelab work before the beginning of the lab session. For the

written questions you are required to write the solutions on separate sheet. Remember no

copying from other student is allowed.

✓ For any questions, you can submit your questions to the instructor using email. The instructor’s

emails are as follows:

Dr. Musa Alyaman: m.alyaman@ju.edu.jo

Eng. Hisham Hatem hishamhatem89@gmail.com

Please make sure to put in the subject line of your email message your full name and your

lab session number for identification.

PIC16F84A 8-bit Microcontroller

Important PIC16F84 Features:

• Only 35 single word instructions

• Operating speed: DC - 20 MHz clock input

• 1024 words of program memory

• 14-bit wide instruction words

• 8-bit wide data bytes

• 15 Special Function Hardware registers

• Eight-level deep hardware stack

• 13 I/O pins with individual direction control

• High current sink/source for direct LED drive

• 10,000 erase/write cycles Enhanced FLASH Program memory

typical

• Low power, high-speed technology

mailto:m.alyaman@ju.edu.jo
mailto:hishamhatem89@gmail.com

MXE 432 First semester 2018/2019 3

Mechanical Switch De-bouncing

The push-button switches are often used to provide input to digital systems. However, mechanical switches

do not open or close cleanly. When a switch is pressed, it makes and breaks contacts several times before

settling into its final position. This causes several transitions or "bounces" to occur. To correct this situation

a de-bounce circuit is connected to the switches, thus removing the series of pulses generated by the

mechanical action of the switch.

The most basic circuit used to de-bounce a switch is shown below. It consists of a resistor and a capacitor

in series. The resistor and capacitor values must be chosen such that the RC time constant is greater than

the bounce time.

MXE 432 First semester 2018/2019 4

University of Jordan

School of Engineering

Department of Mechatronics Engineering

Microprocessor and Microcontroller Laboratory

0908432

Exp. 1: MPLAB Basics (1)

Objective

To be familiar with Microchip MPLAB Integrated Development Environment (IDE) and the whole

process of building a project, implementing, modifying simple codes, compiling the project, and

simulating the code.

Pre-lab Preparation:

1- Read the PIC16F84A data sheet chapters 1, 2 especially (2.1, 2.2, 2.3).

2- Review the sections in the book regarding the Memory (Chapter 2) and MPLAB (Chapter 4).

Procedure:

This lab experiment is composed of two parts. All parts involved using MPLAB and implementing codes

to learn key issues.

Part 1
In this section we will learn the steps necessary to create a project using MPLAB and then once created,

we will learn how to compile it to create the necessary files that will allow us to simulate the project or

alternatively, to program the microcontroller with the machine code generated.

[] Create a directory on the PC in D drive under the Lab2 folder in which to store all of your work.

[] Open a new text document and write the following:

 movlw 06
 movwf 01
 nop

 nop
 end

[] Save the text file, you created with Lab2_P1.asm (Make sure that the extension is .asm and not

.txt).

[] Start the MPLAB software on your PC.

[] To create a project in MPLAB, follow the following simple steps: Select the Project → Project

Wizard menu item. In the device selection menu, choose 16F84A. Click next. In the Active

Toolsuite, choose Microchip MPASM Toolsuite. Click next. Name the project Lab2Part1. For the

project directory, make sure to browse to your created subdirectory. Click next. Add the file called

Lab2_P1.asm. Make sure to check the box next to the name after the file has been added. Click

next. Click Finish.

MXE 432 First semester 2018/2019 5

[] From the window Tab, select the Lab2Part1.mcw window. Double click on the Lab2_P1.asm file

name in the project file tree. The file Lab2_P1.asm should open now in the editor window. This is

where you will usually write your programs, debug them and simulate them.

[] To compile your project; from the Project Tab, choose Build All. Your program should compile

now, and you should see a small window showing details of the compilation process and the

following message "Build Succeeded" (Note the new files generated in your directory named:

Lab2_P1.hex, Lab2_P1.lst, and Lab2_P1.err).

Exercise 1:

Write a code segment that initializes the INTCON register with the value 5. (You can get the address of

INTCON register from the data memory map in PIC16F84A Datasheet.) Then compile it and make sure

that there are no error messages.

Note: save the file as EX1.asm and the project Lab2_ex1.

Part 2

In this part we will use the same code used in Part1.

Simulation is a very powerful tool in the hands of the embedded system developer. It allows us to run the

code we have written on the computer and check whether it is working properly as expected without having

to program the chip. In this part we will see an example of some of the abilities of the simulator.

[] From the Debugger Tab, choose Select Tool, and then enable MPLAB SIM for the simulator. Then

from the same Tab, go to Settings. Select the Osc / Trace Tab and set the desired processor

frequency to 4 MHz. This will tell the simulator in MPLAB to assume that Fosc is 4 MHz. Click

OK to close the settings window.

[] From the Window tab, select the Tile Horizontally. This will show you all the current active

windows in your project.

[] Select the Debugger → Reset, and then choose the Processor reset menu item or press F6. The

software should highlight (with a green arrow). In this step, you have told the simulator to start

behaving as if the microcontroller has just been given power. So, it is now ready to start execution

of your program. It is now ready and waiting at the reset vector for your next command. Note that

the program is not running yet.

[] Select the View → Watch Window. From the SFR drop down list, choose TMR0. Click the Add

SFR button. Repeat the same procedure but for INTCON and OPTION _REG. You should now

note that your new Watch Window has these four register names listed, along with their addresses

and contents. Select the TMR0 row. Right Click and select the Properties button. Note that you

can view a register as hex, decimal, binary, or ASCII.

[] Hit F7 to step through the program one instruction at a time. Notice the PCL register counting in

the status bar. The PCL register is the low byte of the program counter and shows what address in

memory the microcontroller is going to execute next. This method of using the simulator is very

useful when you want to check for errors and for debugging purposes. (Note that the value of

TMR0 register after the execution of these two instructions is 06).

MXE 432 First semester 2018/2019 6

Exercise 2:

Write a code segment that initializes the TRISB register with the value 8. You can get the address of

TRISB register from the data memory map in PIC16F84 Datasheet. To ensure that you wrote a correct

code view the TRISB register from Watch window, step through the code, and notice if the value of

TRISB is being initialized correctly, if not why?

Exercise 3:

Write a code segment that initializes the register with address 0X186 with the value 10, step through the

code, and notice if the value of register is being initialized correctly, if not why?

……

……

Exercise 4:

Write a code segment that initializes the register with address 0X1E with the value 13, step through the

code, and notice if the value of register is being initialized correctly, if not why?
……

……

Exercise 5:

Write a code segment that initializes the register with address 0X9A with the value 7, step through the

code, and notice if the value of register is being initialized correctly, if not why?

……

……

Exercise 6:

Write a code segment that initializes the register with address 0X6A with the value 9, step through the

code, and notice if the value of register is being initialized correctly, if not why?

……

……

MXE 432 First semester 2018/2019 7

University of Jordan

School of Engineering

Department of Mechatronics Engineering

Microprocessor and Microcontroller Laboratory

0908432

 Exp. 2: MPLAB Basics (2)

Objective

To be familiar with assembly language programming and the Microchip PIC 16 series instruction set.

Pre-lab Preparation:

Review Experiment 2 thoroughly.

Read chapter 7 of the PIC16F84A data sheet.

Review the Status Register- Section 2.2.1 in the book

Procedure:

 This lab experiment is composed of two Parts. The first part introduces the theory behind assembly

language programming and machine code format. The second part is an interactive one where you will be

introduced to some PIC instructions and investigates their syntax, parameters, and usage. The experiment

involves using MPLAB and implementing codes to learn key issues.

Part 1: (Theory)

Introduction to Assembly Language and the PICMicro ISA (Instruction Set Architecture)

Embedded systems combine both hardware and software aspects. The hardware evolved to a high degree

of integration that has been mostly integrated in modern ICs. In addition, programming also evolved from

directly writing machine codes to assembly and higher-level languages such as C.

Why use assembly while we have the high-level-language “HLL” alternatives?

Assembly once learnt and professionally used offers several advantages over HLL programming in that

the professional programmer can use it to write smaller codes in comparison with that produced by HLL

code compilers “this is due to compiler inefficiency”. Shorter codes execute fast and therefore

beneficial when it comes to real-time application requirements. Moreover, to keep costs low and

reduce power consumption, memories integrated into microcontrollers are small, so it is important for the

programmer to write minimal codes for his complex programs to fit in.

On the other hand, using HLL reduces code complexity, simplifies code debugging and leads to faster

product development which offers shorter time to market. Such aspect is important in today’s competitive

market.

Introduction to the PIC 16 series machine code

Each PIC16XXX instruction is a 14-bit word, divided into an OPCODE which specifies the instruction

type and one or more operands which further specify the operation of the instruction. Here, another

classification of the instruction introduces itself according to the instruction format

The PIC16XXX instruction set is divided into:

• Byte-oriented instructions, which are so, named because they deal with whole registers (byte wide).

• Bit-oriented instructions which affect single bits in registers

• Literal instructions which contain literals (constant numbers) within the same instruction

MXE 432 First semester 2018/2019 8

• Control instructions, which alter the flow of operation of the programs or give direct commands to the

PIC.

The STATUS Register: The STATUS register holds the bits that are used to carry extra information about

the result of the instruction most recently executed, for example whether the result is zero or a carry/borrow

operation has occurred.

Part 2: (Practical)

1) The “EQU” directive

The equate directive is used to assign labels to numeric values. They are used to DEFINE CONSTANTS

or to ASSIGN NAMES TO MEMORY ADDRESSES OR INDIVIDUAL BITS IN A REGISTER and

then use the name instead of the numeric address.

Example1: - In this part we will learn the equ directive and how we can use it in our programs to make

it meaningful.

A)

 [] Open a new Text document and write on it the following:

 Tmr0 equ 01
 movlw 06
 movwf Tmr0
 nop
 nop
 end

MXE 432 First semester 2018/2019 9

[] Save the text file you created with Lab3_P1.1a.asm

[] Create a new project, Name the project Lab3Part1.1a

[] Compile the project and note if there are any errors, did the compiler recognize Tmr0, how?

B)

Num1 equ 20 ;GPR @ location 20
Num2 equ 40 ;GPR @ location 40
Movlw 5 ; move the constant 5 to the working register
Movwf Num1; copy the value 5 from working register to Num1 (address 20)
Movlw 2 ; move the constant 2 to the working register
Movwf Num2 ; copy the value 2 from working register to Num2 (address
40)
Nop
End

2)The “include” directive

Suppose we are to write a huge program that uses all registers. It will be a tiresome task to define all

Special Function Registers (SFR) and bit names using “equate” statements. Therefore, we use the include

directive.

- The include directive calls a file which has all the equate statements defined for you and ready to use,

its syntax is

#include “PXXXXXXX.inc” where XXXXXX is the PIC part number

Older version of include without #, still supported.

Example: #include “P16F84A.inc”

Example2: - In this part we will learn the include directive and how can we use it in our programs to

make them meaningful.

 [] Open a new Text document and write on it the following:

 # include “p16f84.inc”
 movlw 0x3f
 movwf STATUS
 movlw 12
 movwf OPTION_REG
 nop
 nop
 end

[] Save the text file you created in folder Lab3 with name Lab3_P1.2.asm.

[] Create a new project , Name the project Lab3Part1.2, and add the file Lab3_P1.2.asm

[] Compile the project and note if there are any errors, did the compiler recognize OPTION_REG,

how?

[] View the OPTION_REG register from the Watch window, step through the code and notice if the

value of OPTION_REG is being set to 12, if not why?

MXE 432 First semester 2018/2019 10

3- " MOVF" instruction.

The PIC-Micro instruction set has several instructions that are used to move data, literals as shown below:

MOVF:- This instruction moves the data stored in the register to either the working register or to the

register itself. This is the only data movement instruction that affects the STATUS register.

[] Create a new project and name it Lab3Part1.3

[] Write the following code, and save it as

Lab3_P1.3.asm

Location equ 0C

MOVLW 0

MOVWF Location

MOVF Location, 0

END

[] Build the project

[] Open the watch window, add the WREG,

STATUS registers, and add the symbol Location.

[] Run and simulate the project. Did the value of

Status Register change? If yes, why, and what is the affected bit? If not, explain.

[] What is the equivalent machine code of instruction MOVF TMR0, 0.

Exersice1: -

Write a code that initiates the memory location 0x0D with the value 0 and moves its contents to itself. Use

the equ directive to give the GPR (General Purpose Register) a name and use it in your program. Watch

the STATUS register, did its value change? Explain.

Exersice2: -

Write a code to copy the contents of location 0x0E to the location 0x1F

Exersice3: -

Write a code to exchange the contents of location 0x33 with location 0x11

4- Arithmetic instruction.

MXE 432 First semester 2018/2019 11

Example1: -
 include "p16f84a.inc"

cblock 0x30
 Num1
 Num2
 Result1
 Result2
endc

 org 0x00
Main
 Movlw 9
 Movwf Num1
 Movlw 8
 Movwf Num2
 movf Num1, W
 addwf Num2, W
 Movwf Result1
 Movlw 1
 Movwf Num1
 Movlw D’255’
 Movwf Num2
 movf Num1, W
 addwf Num2, W
 Movwf Result2
 nop
 end

Example2: -
 include "p16f84a.inc"

cblock 0x30
 Num1
 Num2
 Result1
 Result2
endc

 org 0x00
Main
 Movlw 4
 Movwf Num1
 Movlw 8
 Movwf Num2
 movf Num1, W
 subwf Num2, W
 Movwf Result1
 Movlw 9
 Movwf Num1
 Movlw 7
 Movwf Num2
 movf Num1, W
 subwf Num2, W
 Movwf Result2
 nop
 end

MXE 432 First semester 2018/2019 12

5- Logical instruction.

6- Branch instruction.

Example3: -

 include "p16F84A.inc"
cblock 0x25
 testNum
 Result
endc
 org 0x00
Main
 movf testNum, W
 sublw D’10’ ;10d - testNum
 btfss STATUS, C
 goto Greater ;C = 0, that's B = 1, then testNum > 10
 goto Smaller ;C = 1, that's B = 0, then testNum < 10
Greater
 movlw A'G'
 movwf Result
 goto Finish
Smaller
 movlw A'S'
 movwf Result
Finish
 nop
 end

MXE 432 First semester 2018/2019 13

Exercise1: -

Write a code to check if the MSB (High Nibble) is greater than LSB (Low Nibble) or not for a certain

number in location 0x0E, if the result is true set the value of variable RESULT to “G”, else set the value

of variable RESULT to “S”.

Examples: -

Number1:0x49 Result =S

Number2: D’100’=0x64 Result =G

Number3: B’00110011’ Result =S

Discussion and Follow-up

1.How many bits are in a nibble? How many nibbles are in a byte?

2.Refer to Chapter 2 of the data sheet. What is the address of the PORTB register?

3.Are the names of the SFR (Special Function Register) registers used in the program case sensitive

or not? Check this by changing the name of one SFR register to small letters and then compile the

project.

4.Write a program that implements the

following equation:

R = 3*V1+V2+2*V3

Where the addresses and values of the

variables are as follows:

5.The following two codes logically perform the same function; however, the second code gives

different results, why?

#include “p16f84a.inc” #include “p16f84a.inc”

clrf PORTB clrf STATUS

movlw 45 movlw 45

movwf PORTB movwf STATUS

swapf PORTB, f swapf STATUS, f

nop nop

end end

6.Write a simple program that implements the following pseudocode Initialize location 0x30 (LocA)

with the decimal value of 15 Initialize location 0x40 (LocB) with the value of 0

 LocA = LocA – LocB

LocB = LocB + 1

Repeat until LocA = 0

Include a screenshot of your work showing the watch window and displaying the final values of

LocA and LocB.

Name Address Value

V1 0x20 B’00010111’

V2 0x21 D’39’

V3 0x22 a’A’

Result 0x26 ?

MXE 432 First semester 2018/2019 14

University of Jordan

School of Engineering

Department of Mechatronics Engineering

Microprocessor and Microcontroller Laboratory

0908432

Exp. 3: Implementing Instructions (I)

Objectives

1. To be familiar with assembly language programming and the Microchip PIC 16 series instruction set.

2. To see an application of macros and methods of utilizing them.

3. To use the debugging facility of the MPLAB IDE to fix program bugs.

Pre-lab Preparation:

1. Read chapter 7 of the PIC16F84 data sheet.

2. Review the Status Register- Section 2.2.1 in the book

3. Study the assembly code listings of accompanying programs. (Very important).

Example1: - Counting the Number of Ones in a Register’s Lower Nibble Introducing simple
conditional statements.

include "p16f84a.inc"

cblock 0x20

testNum ;GPR @ location 20

tempNum ;GPR @ location 21

endc

cblock 0x30

numOfOnes ;GPR @ location 30

endc

org 0x00

clrf numOfOnes ;Initially number of ones is 0

movf testNum, W ;Since we only need to test the number of ones in the lower
nibble,

 ; we mask them by 0x0F (preserve lower nibble and discard higher
 ;nibble)

andlw 0x0F ;in case a user enters a number in the upper digit. Save masked result

movwf tempNum ;in tempNum

rrf tempNum, F ;rotate tempNum to the right through carry, that is the least
 ; Significant bit of tempNum (bit0) goes into the C flag of the

 ; STATUS register, while the old value of C flag goes into bit 7
 ; of tempNum

btfsc STATUS, C ;tests the C flag, if it has the value of 1, increment number of

 ;ones and

incf numOfOnes, F ;proceed, else proceed without incrementing

rrf tempNum, F

btfsc STATUS, C ;Same as above

incf numOfOnes, F

rrf tempNum, F

MXE 432 First semester 2018/2019 15

btfsc STATUS, C

incf numOfOnes, F

rrf tempNum, F

btfsc STATUS, C

incf numOfOnes, F

nop

end

As you can see in the above program, we did not write instructions to load testNum with an initial value

to test; this code is general and can take any input. So, how do you test this program with general

input?

After building your project, adding variables to the watch window, and selecting MPLAB SIM

simulation tool, simply double click on testNum in the watch window and fill in the value you want.

Then Run the program.

Change the value of testNum and re-run the program again, check if numOfOnes hold the correct value.

Coding for efficiency: The repetition structures

You have observed in the code above that instructions from 14 to 25 are simply the same instructions

repeated over and over four times for each bit tested.

Now we will introduce the repetition structures, similar in function to the “for” and “while” loops you

have learnt in high level languages.

include "p16f84a.inc"
 cblock 0x20
 testNum
 tempNum
 endc
 cblock 0x30
 numOfOnes
 counter ;since repetition structures require a counter, one is declared
 endc
 org 0x00
 clrf numOfOnes
 movlw 0x04 ;counter is initialized by 4, the number of the bits to be

 ;tested
 movwf counter
 movf testNum, W
 andlw 0x0F
 movwf tempNum
Again
 rrf tempNum, F
 btfsc STATUS, C
 incf numOfOnes, F
 decfsz counter, F ; after each test the counter is decremented,
 goto Again ; if the counter reaches 0, it will skip to
 ; “nop” and program ends
 nop ; if the counter is > 0, it will repeat “goto Again”
 end

 16

Modular Programming

Modular programming is a software design technique in which the software is divided

into several separate parts, where each part accomplishes a certain independent function. This

“Divide and Conquer” approach allows for easier program development, debugging as well

as easier future maintenance and upgrade.

Modular programming is like writing C++ or Java functions, where you can use the

function many times only differing in the parameters. Two structures which are like functions

are Macros and Subroutines which are used to implement modular programming.

1)Subroutines
Subroutines are the closest equivalent to functions

* Subroutines start with a Label (subroutine_Name) giving them a name and end with the

instruction return.

*Subroutines can be written anywhere in the program after the org and before the end

directives.

*Subroutines are used in the following way: Call subroutine_Name.

*Subroutines are stored once in the program memory, each time they are used, they are

executed from that location.

*Subroutines alter the flow of the program; thus they affect the stack.

2)Macros
Macros are declared in the following way (like the declaration of cblocks)

Macro macro Name

Instruction 1

Instruction 2

.

.

Instruction n

endm

*Macros should be declared before writing the code instructions. It is not recommended

to declare macros in the middle of your program.

*Macros are used by only writing their name: macro Name

*Each time you use a macro, it will be replaced by its body. Therefore, the program will

execute sequentially, the flow of the program will not change. The Stack is not affected.

 17

Example2: -

; --
; General Purpose RAM Assignments
; --
cblock 0x17
InputM2
Input_TempM2
InputM4
ResultM2
Result_TempM2
ResultM4
Endc

; --
; Macro Definitions
; --
Multiply2 macro
Movf Input_TempM2,w
Addwf Input_TempM2,w
movwf Result_TempM2
Endm
; --
; Vector definition
; --
 org 0x000
 nop
 goto Main

INT_Routine org 0x004
 goto INT_Routine
; --
; The main Program
; --
Main Movlw d'15'
Movwf InputM2
Movwf InputM4
Movwf Input_TempM2
Multiply2
movwf ResultM2
Movwf Input_TempM2
Call Multiply4
Goto finish
; --
; Sub Routine Definitions
; --
Multiply4
Multiply2
Movf Result_TempM2,w
Movwf ResultM4
Return
finish
 nop
end

 18

General Multiply function: -Result = Input1 * Input2

General_Multiply
 Clrf Result
Again movf Input2,w
 Addwf Result,f
 Decfsz Input1, f
 Goto Again
Finish
 Return

Exercise1:
Modify Example2 to multiply by 3 Macro(Multiply3) and multiply by 9(Multiply9)

function?

Exercise2:
Write a test code for General Multiplication function for two following cases: -

1- Input1=d’9’, Input2=d’7’

2-Input1=0, Input2=15?

Discussion and Follow-up

Write a General Divide function [
𝐈𝐧𝐩𝐮𝐭𝟐

𝐈𝐧𝐩𝐮𝐭𝟏
]that uses multiple subtract to perform following

equation: -

Input2 = (Input1) *Counter + Remains

Where; 0 Remains Input1

 Counter is integer number of
𝐈𝐧𝐩𝐮𝐭𝟐

𝐈𝐧𝐩𝐮𝐭𝟏

Example:- Input1=3,Input2=17;we can subtract 3 five times from 17 without borrow.

17

3
= 3 ∗ 𝟓 + 𝟐; 𝑤ℎ𝑒𝑟𝑒 𝒄𝒐𝒖𝒏𝒕𝒆𝒓 = 𝟓 𝑎𝑛𝑑 𝑹𝒆𝒎𝒂𝒊𝒏𝒔 = 𝟐

 19

University of Jordan

School of Engineering

Department of Mechatronics Engineering

Microprocessor and Microcontroller Laboratory

0908432

Exp. 4: Implementing Instructions (II)

Objectives

1. To be familiar with assembly language programming and the Microchip PIC 16 series

instruction set.

2. To see an application of macros and methods of utilizing them.

3. To use the debugging facility of the MPLAB IDE to fix program bugs.

Pre-lab Preparation:

1. Read chapter 7 of the PIC16F84 data sheet.

2. Review the Chapter 3 in the book

3. Study the assembly code listings of accompanying programs. (Very important).

Procedure:

This lab experiment is composed of three parts. The first part discuss how we can handle

with EEPROM. The second part introduces the theory behind BCD numbers used in this

experiment. The third part is an interactive one where you will be introduced to some PIC

codes and to investigate their parameters and usage. The experiment involves using MPLAB

and implementing codes to learn key issues.

Part 1:

1.1) Writing to the EEPROM Data Memory code

Movlw 0xFF
Movwf EEADR
Movlw A’H’
Bcf
STATUS,RP0
Movwf EEDATA
Incf EEADR,f
Bsf STATUS, RP0
Bcf INTCON, GIE
Bsf EECON1, WREN
Movlw 0x55
Movwf EECON2
Movlw 0xAA
Movwf EECON2
Bsf EECON1,WR
Bsf INTCON, GIE
Test
Btfsc EECON1,WR
Goto Test

Movlw A’I’
Bcf
STATUS,RP0
Movwf EEDATA
Incf EEADR,f
Bsf STATUS, RP0
Bcf INTCON, GIE
Bsf EECON1, WREN
Movlw 0x55
Movwf EECON2
Movlw 0xAA
Movwf EECON2
Bsf EECON1,WR
Bsf INTCON, GIE
Test1
Btfsc EECON1,WR
Goto Test1

 20

Exercise1: -

Modify the code using modular programing technique to write your name in EEPROM

data memory. In addition, initial All GPR with first letter of your name.

1.2) Test code to Reading from the EEPROM Data Memory code

Bcf STATUS, RP0
Clrf EEADR
Bsf STATUS, RP0
Bsf EECON1, RD
Bcf STATUS, RP0
Clrf Counter
Bsf STATUS, RP0
Clrf TRISB
Bcf STATUS, RP0
Movlw A’H’
Subwf EEDATA,w
Btfsc STATUS,Z
Goto Finish
Incf Counter,f
Movlw A’M’
Subwf EEDATA,w
Btfsc STATUS,Z
Finish Incf Counter,f
Call Look_Up
Movwf PORTB
Loop
Goto Loop

Look_Up

Movf Counter,w

Addwf PCL,f

Retlw B'11000000'

Retlw B'11111001'

Retlw B'10100100'

Retlw B'10110000'

Retlw B'10011001'

Retlw B'10010010'

Part 2:

Binary Coded Decimal (BCD) is an encoding scheme for decimal numbers in which each

digit is represented by its own binary sequence. Its main advantage is that it allows easy

conversion to decimal digits for printing or display and faster decimal calculations. Its

drawbacks are the increased complexity of circuits needed to implement mathematical

operations and a relatively inefficient encoding (6 wasted patterns per digit).

In BCD, a digit usually represented by four bits which, in general; represent the values 0 - 9.

To BCD-encode a decimal number using the common encoding, each decimal digit is stored

in a four-bit nibble.

Decimal: 0 1 2 3 4 5 6 7 8 9

BCD: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

 21

Since most computers store data in eight-bit (byte), there are two common ways of storing

four-bit BCD digits in those bytes:

1. Unpacked BCD: where each digit is stored in one byte and the other four bits are then

set to all zeros.

2. Packed BCD: where two digits are stored in each byte.

Part 3:

[] Create a directory on the PC in drive D inside folder lab4 in which to store all of your

work. Use YOUR name as the name of the directory.

[] Copy the Example3.asm file to your created directory from the lab5directory.

 [] Create a new project with Example3.asm. Build the project.

[] Select the Debugger → MPLAB SIM→ Reset, and then choose the Processor

reset menu item or press F6. The software should highlight (with a green arrow)

the “nop” instruction at address 0 just preceding the “goto Main” instruction in

the code. In this step, you have told the simulator to start behaving as if the

microcontroller has just been given power. So, it is now ready to start execution

of your program. It is now ready and waiting at the reset vector for your next

command. Note the program is not running yet.

[] Select the View → Hardware Stack menu item. This allows you to view the PIC

microcontroller hardware stack, which stores return addresses after each interrupt and

function call. Note that the stack is empty since nothing is happening.

[] Select the View → Watch Window. From the Symbols drop down list, choose BCD1.

Click the Add Symbol button. Repeat the same procedure but for BCD2, BCD_Result.

You should now note that your new Watch Window has these three register names

listed, along with their addresses and contents.

 [] Select the Window → Tile Horizontal menu item. Close the Output window if it is

still open. Select Window again → Tile Horizontal. Make sure that the Editor,

Hardware Stack and Watch windows are observable clearly.

[] Select the Debugger → Animate menu item. Observe the code running one instruction

at a time, and the stack updating as routines are called. The status bar at the bottom of

MPLAB shows the program counter (pc), which contains the address of the instruction

that is to be executed next. The status bar also shows the value of the W register, the

processor (PIC16F84A), the Status register flag settings, and a couple of other

important items.

[] Select the Debugger → Halt menu item (F5).

You have just seen one aspect of the simulator. Using the animate function, you can easily

simulate the whole program when it is running and watch how the registers are changing.

You can also observe and see whether the program is executing correctly, calling the

functions correctly. You can also see if the hardware stack is overflowing or not. Therefore,

you can generally get an idea if the ideas and logic you have implemented in the software are

working correctly as you expect or not.

 22

Exercise2: -

A certain assembly application uses 1 digit packed BCD numbers to represent temperature.

Before processing the temperature, it should be checked against the valid range of 14 – 87 Cº.

Write a procedure that implements this checking functionality. The procedure should load the

memory location Result in location 0x22 with the following:

 Result=00 if the temperature falls in range, Result=FF if the temperature falls out of

range

Discussion and Follow-up

Important Note: You must use comments to clarify your code. Use :equ” and include

directives to specify the SFRs and GPRs. Utilize Macros, Subroutines and “CBlocks” in

your code.

An unpacked 3-digit BCD number is stored in memory starting at the location 0x38 (Least

Significant Digit "LSD"). You are required to convert the unpacked 3-digit BCD number into

binary format and store the value in location 0x25. Use multiply by the shifting method.

 -Assume that the number is already in the range (0 – 255).

Hint: 105 = 5 + 0*10 + 1 *102 and the value stored in 0x25 is 01101001

 23

;Program 5.1 unpacked BCD number.
;**
;* FUNCTION: Test a BCD returning a boolean result
;* ENTRY : BCD in F20h *
;* EXIT : Result=00 if valid BCD number , Result=FF if invalid BCD number
;* **

#include "P16F84A.inc"

BCD equ 20h ; The BCD number is in File 20h
Result equ 21h ; The result is in File 21h
; --
BCD_Test
 clrf Result ; Clear Result file
 movf BCD,W ;
 iorlw 0xF0 ; Mask the last four digits of the BCD File
 addlw 6 ; Add six
 btfsc STATUS,C ; Needed IF produced a carry
 comf Result,F ; Make Result FF (Invalid BCD Number)
 nop
 nop

 END

;Program 5.2 packed BCD number.
;**
;* FUNCTION: Test packed BCD returning a boolean Final_Result
;* ENTRY : BCD in F20h *
;* EXIT : Final_Result=00 if Two digits valid Packed BCD number
;* Final_Result=0F if invalid BCD First digit number and valid BCD Second
;digit number
;* Final_Result=F0 if valid BCD First digit number and invalid BCD Second
;digit number
;* Final_Result=FF if Two digits invalid Packed BCD number
;* **

#include "P16F84A.inc"

BCD equ 20h ; The BCD number is in File 20h
Result equ 21h ; The result is in File 21h
Final_Result equ 22h ; The Final Packed BCD number result is in File 22h
; --
BCD_Test macro
 clrf Result ; Clear Result file
 movf BCD,W ;
 iorlw 0xF0 ; Mask the last four digits of the BCD File
 addlw 6 ; Add six
 btfsc STATUS,C ; Needed IF produced a carry
 comf Result,F ; Make Result FF (Invalid BCD Number)
 nop
 nop
 endm
; --

 BCD_Test ;Test the First Digit
 movf Result,W
 andlw 0x0F
 movwf Final_Result ;Save the First digit result
 swapf BCD,F
 BCD_Test ;Test the Second Digit

 24

 swapf BCD,F
 movf Result,W
 andlw 0xF0
 addwf Final_Result,F ;Save the Second digit result
 nop
 nop

 END

;Program 5.3 packed BCD number Subtraction and Sddition.
;**
;* FUNCTION: Test Two packed BCD returning a boolean Final_Result if the two BCD
;numbers are valid numbers
;* then Subtract the first digits and add the second digits else ends
;* ENTRY : BCD1 in F30h
;* : BCD2 in F40h
;* : BCD_Result in F45h
;* EXIT : if two Valid BCD numbers BCD_Result in F50h
;* **
#include "P16F84A.inc"
; --
; Local equates for your own symbolic designators
; --
BCD equ 20h ; The BCD number is in File 20h
Result equ 21h ; The result is in File 21h
Final_Result equ 22h ; The Final Packed BCD number result is in File 22h

; --
; General Purpose RAM Assignments
; --
 cblock 0x30
 BCD1 ; The First BCD number is in File 30h
 Final_Result1
 endc

 cblock 0x40
 BCD2 ; The Second BCD number is in File 40h
 Final_Result2
 endc

 cblock 0x45
 BCD_Result ; The Final BCD number result is in File 50h
 endc
; --
; Macro Definitions
; --
BCD_Test macro
 clrf Result ; Clear Result file
 movf BCD,W ;
 iorlw 0xF0 ; Mask the last four digits of the BCD File
 addlw 6 ; Add six
 btfsc STATUS,C ; Needed IF produced a carry
 comf Result,F ; Make Result FF (Invalid BCD Number)
 nop
 nop
 endm

 25

; --
; Vector definition
; --
 org 0x000
 nop
 goto Main

INT_Routine org 0x004
 goto INT_Routine
; --
; The main Program
; --
Main movf BCD1,W
 movwf BCD
 call Packed_Test ; Test the First Number
 movf Final_Result,W
 movwf Final_Result1

 movf Final_Result1,F
 btfss STATUS,Z ; Test if valid First BCD continue else ends
 goto Finish

 movf BCD2,W
 movwf BCD
 call Packed_Test ; Test the Second Number
 movf Final_Result,W
 movwf Final_Result2

 movf Final_Result2,F
 btfss STATUS,Z ; Test if valid Second BCD continue else ends
 goto Finish

 movf BCD2,W
 xorlw 0x0F
 addwf BCD1,W ;BCD_ResultL = BCD1L - BCD2L
 addlw 0xf1 ;BCD_ResultH = BCD1H + BCD2H
 movwf BCD_Result

 goto Finish

; --
; Sub Routine Definitions
; --
Packed_Test
 BCD_Test ;Test the First Digit
 movf Result,W
 andlw 0x0F
 movwf Final_Result ;Save the First digit result
 swapf BCD,F
 BCD_Test ;Test the Second Digit
 swapf BCD,F
 movf Result,W
 andlw 0xF0
 addwf Final_Result,F ;Save the Second digit result
 nop
 nop
 return
; --
; The main Program end
; --
Finish
 END

 26

University of Jordan

School of Engineering

Department of Mechatronics Engineering

Microprocessor and Microcontroller Laboratory

0908432

Exp. 5: Basic Programming

Objectives

1. To become familiar with the process of writing an assembly language program for the PIC.

2. To demonstrate different methods of handling the I/O process.

3. To demonstrate different methods of handling interrupts.

4. To use the debugging facility of the MPLAB IDE to test programs.

Pre-lab Preparation:

1. Read chapter 7 of the PIC16F84 data sheet.

2. Read Appendix 1 carefully.

3. Write the required assembly language programs carefully with proper documentation.

Procedure:

Write an assembly code, which operates a PIC16F84A that control a bottle labeling

and packing machine.

Machine Sequence

1. The bottles pass through a conveyor belt, when the photocell sensor detects a bottle

(External Interrupt), the label actuator (Solenoid) starts working and stops after 1.2 Sec.

2. 7-Segments show the numbers of labeled bottles, when the number of labeled bottles

passing through the photocell sensor reaches nine the conveyor belt motor stops.

3. Nine bottles are packed into a cartoon. The cycle starts again when packing process is

finished (Packing process needs to 3.6 Sec. to finished by Electro-Mechanical

mechanism).

4. When the number of packed bottles reaches nine (Show the numbers of packed bottles on

another digit of 7-Segments) the conveyor belt motor stops until the START pushbutton

is pressed to start the cycle again.

 27

 28

General Guidelines for Writing your Programs

a. Always start with visualizing in your mind the process that should take place in the

hardware.

b. Determine the inputs and outputs for the hardware.

c. Assign PIC ports to the hardware I/O.

d. Remember and always keep in mind the data flow cycle.

e. Never start writing code immediately in MPLAB, it wastes time and will very

rarely give you what you want.

f. Start always with a flowchart on paper keeping in mind the above points. Try at

first a general flowchart and then attempt to expand the flowchart into more detail

to reflect the requirements of the program.

g. If you have done the above properly you will find that the flowchart will divide the

program naturally into parts. You should now be able to write the code for each

part.

h. Writing assembly takes time and needs patience, so be patient and careful with

your code.

i. Write your comments to the code immediately with the code.

j. Study the programs that you have used in other experiments for writing style, hints

and ideas.

k. Use the simulator in MPLAB to simulate your program.

l. You should demonstrate your working programs on the board to the lab

supervisor.

 29

;**

; This program control a bottle labeling and packing machine.
; Photocell sensor is connected into RB0
; 7-Segments is connected to PORTB (We connect RB1 to a, RB2 to b ……….And
;RB7 to g)
; Digits selection of bottles number 7-Segments is connected to RA0
; Digits selection of cartoon number 7-Segments is connected to RA1
; Conveyor belt motor is connected to RA2 (Connect to LED1 on board)
; Label actuator is connected to RA3 (Connect to LED2 on board)
; START pushbutton is connected to RA4
; The program uses a PIC16F84A running at crystal oscillator of frequency
;4MHz.
;**
 Include "p16f84A.inc"
;**
; Macro definitions

push macro

 movwf WTemp ; WTemp must be reserved in all banks
 swapf STATUS,W ; store in W without affecting status bits
 banksel StatusTemp ; select StatusTemp bank
 movwf StatusTemp ; save STATUS
 endm

pop macro

 banksel StatusTemp ; point to StatusTemp bank
 swapf StatusTemp,W ; unswap STATUS nibbles into W
 movwf STATUS ; restore STATUS
 swapf WTemp,F ; unswap W nibbles
 swapf WTemp,W ; restore W without affecting STATUS
 endm
;**
; User-defined variables
 cblock 0x0C ; bank 0 assignments
 WTemp
 StatusTemp
 ;………… Add all variables here.
 endc
;**
; Start of executable code
 org 0x00 ;Reset vector
 nop
 goto Main
 org 0x04 ;
 goto INT_SVC
;;;;;;; Main program ;;
Main
 call Initial ;Initialize everything
MainLoop
 call Bottle_Number ;Check if the number of bottles reaches to nine
 call Caroon_Number ;Check if the number of packing bottles reaches to9.
 goto MainLoop ;Do it again

 30

;;;;;;; Initial subroutine ;;;
; This subroutine performs all initializations of variables and registers.
Initial
 Return
;;;;;;; Bottle_Number subroutine ;;;
; This subroutine Test if the number of bottles reaches to nine.
Bottle_Number
 Return
;**
;;;;;;; Caroon_Number subroutine ;;
; This subroutine Test if the number of packing bottles reaches to nine.
Caroon_Number
 Return
;**
;;;;;;; Delay subroutine ;;
; This subroutine to get a delay with 1.2 Sec.
Delay
 Return
;**
; ;;;;;;; Bottle_Labeling subroutine ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; This subroutine start labeling and counts the number of bottles
Bottle_Labeling
 bcf INTCON, INTF ;Clear the External interrupt flag
; write the code here
 goto POLL ;Check for another interrupt
;**
INT_SVC
push
POLL
 btfsc INTCON, INTF ; Check for an External Interrupt
 goto Bottle_Labeling
; btfsc ... ; Check for another interrupt
; call ...
; btfsc ... ; Check for another interrupt
; call ...
 pop
 retfie

;**
 End

 31

University of Jordan

School of Engineering

Department of Mechatronics Engineering

Microprocessor and Microcontroller Laboratory

0908432

Exp. 6: Frequency Measurement

Objectives

1. To become familiar with hardware timers in 16F877A PIC.

2. To demonstrate the use of internal interrupts linked with the timer1 module of the

16F877A.

3. To use the debugging facility of the MPLAB IDE to fix program bugs.

Pre-lab Preparation:

1. Review the sections in the book regarding methods of generating time delays.

2. Review the sections in the book dealing with the timer/counter peripheral (Chapter 5).

3. Review the instruction set of the PIC 16.

4. Study the assembly code listings of accompanying programs. (Very important).1

Procedure:

The principle of frequency measurement

Frequency measurement is a very important application of both counting and timing.

Fundamentally, frequency measurement is a measure of how many times something happens

within a certain known period, as illustrated in Figure 1. The use can be as diverse as how

many counts are received per minute in a Geiger counter, how many cycles per second (i.e.

Hertz) in an electronic or acoustic measurement, or how many wheel revolutions there are

per unit of time in a speed measurement. Both a counter and a timer are needed, the timer to

measure the reference period of time and the counter to count the number of events within

that time (1).

In this experiment we use Timer0 as counter and Timer1 for periodic time.

 Figure7.1: The principle of frequency measurement (1)

(1)Designing Embedded Systems with PIC Microcontrollers: Principles and applications

 32

Frequency Range TMR1H TMR1L 7-Segments

0-511 0000 0001 xxxx xxxx 0

512-1023 0000 001x xxxx xxxx 1

1024-2047 0000 01xx xxxx xxxx 2

2048-4095 0000 1xxx xxxx xxxx 3

4096-8191 0001 xxxx xxxx xxxx 4

8192-16383 001x xxxx xxxx xxxx 5

16384-32767 01xx xxxx xxxx xxxx 6

>32767 1xxx xxxx xxxx xxxx 7

Discussion and Follow-up:

1. Suppose the oscillator frequency is 8 MHz.

-What is the longest possible time between Timer0 interrupts? In addition, how

would TMR0 and OPTION_REG be initialized in this case?

…………………………………………………………………………………

…………………………………………………………………………………

-What is the shortest possible time between Timer0 interrupts? In addition, how

would TMR0 and OPTION_REG be initialized in this case?

…………………………………………………………………………………

…………….……………………………………………………………………

2. In the PUSH macro, why did we have to use the swapf instruction to save the status

register?

…………………………………………………………………………………………

…………………………………………………………………………………………

3. In the cblock definitions at the beginning of the program, why did we need to reserve

four different locations to save the W register? Was it necessary? Why or why not?

…………………………………………………………………………………...……

…………………………………………………………………………………………

4. In the pop macro, WTemp is restored to W using two swapf instructions. Why are two

swapf instructions used instead of the simpler movf instruction?

…………………………………………………………………………………………

…………………………………………………………………………………………

5. How many instructions affect the zero bit of the STATUS register?

…………………………………………………………………………………………

6. What does the Master Clear input do when asserted? What pin number on the PIC is

the Master Clear input? Is it active high or active low? What voltage should be

connected to the Master Clear input under normal operation?

…………………………………………………………………………………………

 33

7. Why it is important to save the W and STATUS registers at the beginning of an

interrupt, and restore them at the end of the interrupt?

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

Programming the Chip

[] Copy the FileName.asm to your directory.

[] Start the MPLAB software on your PC and build the project.

[] Select the Configure menu → Select device and make sure the following is selected:

❖ Device is PIC16F877A

[] Select the Configure menu → Configuration Bits and make sure the following are

selected:

❖ Oscillator is XT

❖ Watchdog Timer, Power Up Timer, Brown Out Detect can all be off/disable

for this tutorial

❖ Low Voltage Program should be disabled.

❖ Code Protect Data EE, and Code Protect - turn all off

❖ Flash Memory Write 00000-FFFFFh.

 [] Select Programmer → Select Your Programmer (PICKit2 or MPLAB ICD2). You

should see in the Output window a message regarding the availability of a new

operating system for the programmer. Ignore this message. If you get any other error

messages, ask for the supervisor’s help.

 [] Place the chip in the Zero Insertion Force (ZIF) socket carefully, making sure it is

oriented correctly such that pin 1 is on the left upper side of the ZIF. The chip should

sit without pushing and very easily. Pull the handle of the ZIF socket to the upright

position to hold the chip in place firmly.

 [] From the Programmer menu, select Erase Flash Device to make sure that the PIC you

are using is blank.

[] Select Programmer → Program. This will start the programming process of the chip.

Watch the bottom of the MPLAB IDE program for progress information.

[] If the programming was successful, then you should see a pass message near the

MPLAB IDE icons. If there are any problems, contact the supervisor for help.

[] Remove the chip from the ZIF socket. It is now ready to be tested on the development

board.

 34

PICKit2 Programmer

MPLAB ICD2 Programmer

 35

;**
; This program used to measure the frequency of periodic signal
;(like shaft encoder signal) using Timer0 and Timer1
;The signal is connected to RC0 as a clock to Timer1(Timer1 as counter)
;Timer0 used to get 1 Sec of time to measure the frequency of signal
;7-Segments is connected to PORTB (We connect RB0 to a, RB1 to b ……….And
;RB6 to g)
;to return the rang of frequency as a hexadecimal numbers
;The program uses a PIC16F877A running at crystal oscillator of frequency
;4MHz.
;**
 include "p16f877A.inc"
;**
; Macro definitions
push macro

 movwf WTemp ; WTemp must be reserved in all banks
 swapf STATUS,W ; store in W without affecting status bits
 banksel StatusTemp ; select StatusTemp bank
 movwf StatusTemp ; save STATUS
 endm

pop macro

 banksel StatusTemp ; point to StatusTemp bank
 swapf StatusTemp,W; unswap STATUS nibbles into W
 movwf STATUS ; restore STATUS
 swapf WTemp,F ; unswap W nibbles
 swapf WTemp,W ; restore W without affecting STATUS
 endm
;**
Zero equ B'00111111' ; 7-Segment Code for Zero
One equ B'00000110' ; 7-Segment Code for One
Two equ B'01011011' ; 7-Segment Code for Two
Three equ B'01001111' ; 7-Segment Code for Three
Four equ B'01100110' ; 7-Segment Code for Four
Five equ B'01101101' ; 7-Segment Code for Five
Six equ B'01111101' ; 7-Segment Code for Six
Seven equ B'00000111' ; 7-Segment Code for Seven
Eight equ B'01111111' ; 7-Segment Code for Eight
Nine equ B'01101111' ; 7-Segment Code for Nine
LetterA equ B'01110111' ; 7-Segment Code for A
LetterB equ B'01111100' ; 7-Segment Code for B
LetterC equ B'01011000' ; 7-Segment Code for C
LetterD equ B'01011110' ; 7-Segment Code for D
LetterE equ B'01111001' ; 7-Segment Code for E
LetterF equ B'01110001' ; 7-Segment Code for F
;**
; User-defined variables
 cblock 0x20 ; bank 0 assignnments
 WTemp ; WTemp must be reserved in all banks
 StatusTemp
 Timer1Counts
 TMR0_Counter
 endc

 36

 cblock 0x0A0 ; bank 1 assignnments
 WTemp1 ; bank 1 WTemp
 endc

 cblock 0x120 ; bank 2 assignnments
 WTemp2 ; bank 2 WTemp
 endc

 cblock 0x1A0 ; bank 3 assignnments
 WTemp3 ; bank 3 WTemp
 endc

;**
; Start of executable code
 org 0x00 ;Reset vector
 nop
 goto Main
 org 0x04
 goto INT_SVC
 ;;;;;;; Main program ;;
Main
 call Initial ;Initialize everything
MainLoop
 call Range_Test
 goto MainLoop ;Do it again
;;;;;;; Initial subroutine ;;;
; This subroutine performs all initializations of variables and registers.
Initial
 banksel TRISA ;Select bank1
 clrf TRISB ;set all bits of port B to output
 bsf TRISC,RC0

 movlw 0x07
 movwf OPTION_REG ;Prescaler is assigned to the Timer0 module
 ;Prescaler TMR0 (1:256)
 bsf INTCON,GIE ;Enable Global Interrupt
 bsf INTCON,PEIE ;Enable peripheral interrupts
 bsf INTCON,TMR0IE

 banksel PORTA ;Select bank0
 movlw D'70' ; initialize TMR0 with 70 counts
 movwf TMR0 ; to get interrupt every 47.64ms

 movlw 0x02
 movwf T1CON ;TMR1 Prescale (1:1),TMR1 Oscillator is shut-off
 ;External clock from pin RC0/T1OSO/T1CKI (on the
 ;rising edge)
 bsf T1CON,TMR1ON ;Enables Timer1

 movlw Zero
 movwf PORTB ;initialize 7-Segments to Zero
 clrf TMR0_Counter
 clrf Timer1Counts
 Return

 37

;;;;;;; Range_Test subroutine ;;
; This subroutine performs test the range of counts and show them on the
;7-Segments.
Range_Test

 btfsc Timer1Counts,7 ;Freq less than 32767Hz
 goto seven
 btfsc Timer1Counts,6 ;Freq less than 16384Hz
 goto six
 btfsc Timer1Counts,5 ;Freq less than 8192Hz
 goto five
 btfsc Timer1Counts,4 ;Freq less than 4096Hz
 goto four
 btfsc Timer1Counts,3 ;Freq less than 2048Hz
 goto three
 btfsc Timer1Counts,2 ;Freq less than 1024Hz
 goto two
 btfsc Timer1Counts,1 ;Freq less than 512Hz
 goto one
 goto zero

zero
 movlw Zero
 movwf PORTB
 goto Finish
one
 movlw One
 movwf PORTB
 goto Finish
two
 movlw Two
 movwf PORTB
 goto Finish
three
 movlw Three
 movwf PORTB
 goto Finish
four
 movlw Four
 movwf PORTB
 goto Finish
five
 movlw Five
 movwf PORTB
 goto Finish
six
 movlw Six
 movwf PORTB
 goto Finish
seven
 movlw Seven
 movwf PORTB
Finish
 Return

 38

;**
; TIMER0 RE-Initialize and reset
T0
 movlw D'70' ; initialize TMR0 with 70
 movwf TMR0 ; counts to get interrupt every 47.64ms

 incf TMR0_Counter,F
 movf TMR0_Counter,w
 sublw D'21'
 btfss STATUS,Z
 goto Continue
 movf TMR1H,w
 movwf Timer1Counts
 clrf TMR1L
 clrf TMR1H
 clrf TMR0_Counter
Continue
 bcf INTCON,TMR0IF
 goto POLL ;Check for another interrupt
;**
INT_SVC
push
POLL
 btfsc INTCON,TMR0IF ; Check for an TMR0 Interrupt
 goto T0

 pop
 retfie

;**
 End

 39

University of Jordan

School of Engineering

Department of Mechatronics Engineering

Microprocessor and Microcontroller Laboratory

0908432

Exp. 7: Serial Communication

Objectives

1. To become familiar with the use of serial communications through the USART.

2. To demonstrate methods of remote control using serial communications.

3. To use the debugging facility of the MPLAB IDE to fix program bugs.

Pre-lab Preparation:

1.Review the sections in the book regarding the USART.

2.Read the PIC16F877A data sheet especially chapter 10.

3.Review the instruction set of the PIC 16F877A.

4.Read the assembly programs carefully and try to understand the operation and the

settings used.

Procedure:
 we are going to use the USART of the PIC to receive a character from the PC and

return (send) next character to PC again. The communication is done using the RS232

protocol by utilizing the TTL to RS232 converter IC MAX202 on the board. You will need

to use a communications program on the PC to monitor the data sent by the PIC.

Exercise: -

-Modify the code to receive a number and show the next one on 7-Segments and sent

it to the PC again.

-Modify the code to classify the characters into 9 groups (1-9) as following and show

the number of group on 7-Segments

Group 1 2 3 4 5 6 7 8 9

Character A, B, C D, E, F G, H, I J, K, L M, N, O P, Q, R S, T, U V, W, X Y, Z

 40

;**
; This program to receive a character from the PC and return (send) next
;character to PC again.
;**

 include "p16f877A.inc"

__CONFIG _CP_OFF & _WDT_OFF & _BODEN_OFF & _PWRTE_OFF & _XT_OSC

;**
; User-defined variables

 cblock 0x20
 WTemp ; Must be reserved in all banks
 StatusTemp
 Counter
 endc

 cblock 0x0A0 ; bank 1 assignnments
 WTemp1 ; bank 1 WTemp
 endc

 cblock 0x120 ; bank 2 assignnments
 WTemp2 ; bank 2 WTemp
 endc

 cblock 0x1A0 ; bank 3 assignnments
 WTemp3 ; bank 3 WTemp
 endc
;**
; Macro Assignments

push macro
 movwf WTemp ;WTemp must be reserved in all banks
 swapf STATUS,W ;store in W without affecting status bits
 banksel StatusTemp ;select StatusTemp bank
 movwf StatusTemp ;save STATUS
 endm

pop macro
 banksel StatusTemp ;point to StatusTemp bank
 swapf StatusTemp,W ;unswap STATUS nybbles into W
 movwf STATUS ;restore STATUS (which points to where W was stored)
 swapf WTemp,F ;unswap W nybbles
 swapf WTemp,W ;restore W without affecting STATUS
 endm
;**
; Start of executable code
 org 0x00 ; Reset vector
 nop
 goto Main
;**
; Interrupt vector
 org 0x04 ; interrupt vector
 goto IntService

 41

;**
; Main program

Main
 call Initial ; Initialize everything
MainLoop
 nop
 nop
 goto MainLoop ; Do it again

;**
; Initial Routine

Initial
 movlw D'25' ; This sets the baud rate to 9600
 banksel SPBRG ; assuming BRGH=1 and Fosc=4.000 MHz
 movwf SPBRG

 banksel RCSTA
 bsf RCSTA,SPEN ; Enable the serial port
 bcf RCSTA,RX9 ; Disable9-bit Receive
 bsf RCSTA,CREN ; Enable continuous receive

 banksel TXSTA
 bcf TXSTA,SYNC ; Set up the port for asynchronous
 ;operation
 bsf TXSTA,TXEN ; Transmit enabled
 bsf TXSTA,BRGH ; High baud rate
 bcf TXSTA,TX9 ; Disable9-bit send

 banksel PIE1 ; Enable the Timer2 interrupt
 bsf PIE1, RCIE
 bcf TRISC,RC6 ; Set RC6 to output Send Pin
 bsf TRISC,RC7 ; Set RC7 to input Receive Pin

 banksel INTCON ; Enable global and peripheral interrupts
 bsf INTCON, GIE
 bsf INTCON, PEIE

 banksel Counter
 clrf Counter

 return

;**
; Interrupt Service Routine
; This routine is called whenever we get an interrupt.
IntService
 push
 btfsc PIR1, RCIF ; Check for a Timer2 interrupt
 call RECEIVE
 pop
 retfie

 42

;**

RECEIVE

 movf RCREG,w
 movf RCREG,w
 movwf Counter
 incf Counter,w

 banksel TXREG
 movwf TXREG ; Send a next character out the serial port
 banksel TXSTA
L1 btfss TXSTA,TRMT
 goto L1

 return

 end

 43

University of Jordan

School of Engineering

Department of Mechatronics Engineering

Microprocessor and Microcontroller Laboratory

0908432

Exp.8: - Serial with A/D protocol-based transmission

Objectives

1. To become familiar with the process of writing an assembly language program for the

PIC.

2. To demonstrate different methods of handling the A/D conversion process.

3. To demonstrate different methods of handling the serial communications through the

USART.

4. To demonstrate methods of remote control using serial communications.

5. To demonstrate the use of internal interrupts.

Pre-lab Preparation:

1. Review the sections in the book regarding the A/D.

2. Review the instruction set of the PIC 16F877A.

3. Review the sections in the book regarding the USART.

4. Read the PIC16F877A data sheet especially chapter 10.

Procedure:
In this lab experiment you are required to write an assembly code for a PIC16F877A

which operates as data acquisition system (DAQ) for machine that has two analogue

sensors:

1) Pressure Sensor

2) Temperature Sensor

Your code should transmit for each sensor a message that contains the sensor readings

and a control bit to the computer. The message consists of the following fields:

1- Control Bit: It is a 9th bit of Transmit Data: -

• Zero: to indicate that the message contains the pressure sensor reading.

• One: to indicate that the message contains the Temperature sensor reading.

2- Message data: - It is the Most 8-Significant Bit (MSB) of the A/D conversion result.

The serial transmission for the pressure sensor is event driven: the reading should be

transmitted whenever absolute difference between two readings greater than 25, the reading

is ready to transmit, without considering the time spent between these different readings.

However, the serial transmission for the Temperature sensor reading is time driven: the

readings should be transmitted every 50 ms.

 44

Exercise1: - Modify the Pressure_Test subroutine code to make a test for absolute

difference not for positive difference only.

Exercise2: - Write a subroutine code to return (Send) the digital conversion value as

following: -

Conversion Value range
Return Value

"Send Value"

0-25 0

26-76 1

77-127 2

128-178 3

179-229 4

230-255 5

 45

;**
; This program Serial with A/D protocol based transmission.
;**

 include "p16f877A.inc"

__CONFIG _CP_OFF & _WDT_OFF & _BODEN_OFF & _PWRTE_OFF & _XT_OSC
;**
; User-defined variables

 cblock 0x20
 WTemp ; Must be reserved in all banks
 StatusTemp
 Pressure_Reading
 Difference
 Pressure_Result
 Temperature_Reading
 Counter
 endc

 cblock 0x0A0 ; bank 1 assignnments
 WTemp1 ; bank 1 WTemp
 endc

 cblock 0x120 ; bank 2 assignnments
 WTemp2 ; bank 2 WTemp
 endc

 cblock 0x1A0 ; bank 3 assignnments
 WTemp3 ; bank 3 WTemp
 endc
;**
; Macro Assignments

push macro
 movwf WTemp ;WTemp must be reserved in all banks
 swapf STATUS,W ;store in W without affecting status bits
 banksel StatusTemp ;select StatusTemp bank
 movwf StatusTemp ;save STATUS
 endm

pop macro
 banksel StatusTemp ;point to StatusTemp bank
 swapf StatusTemp,W ;unswap STATUS nybbles into W
 movwf STATUS ;restore STATUS (which points to where W was stored)
 swapf WTemp,F ;unswap W nybbles
 swapf WTemp,W ;restore W without affecting STATUS
 endm

;**
; Start of executable code

 org 0x00 ; Reset vector
 nop
 goto Main

 46

;**
; Interrupt vector

 org 0x04 ; interrupt vector
 goto IntService
;**
; Main program

Main
 call Initial ; Initialize everything
Mainloop
 call Pressure_Conversion
 call Pressure_Test
 call Temperature_Conversion
 goto Mainloop ; Do it again

;**
; Initial Routine

Initial
 movlw D'25' ; This sets the baud rate to 9600
 banksel SPBRG ; assuming BRGH=1 and Fosc=4.000 MHz
 movwf SPBRG

 banksel RCSTA ; Enable the serial port
 bsf RCSTA, SPEN
 banksel TXSTA
 bcf TXSTA, SYNC ; Set up the port for asynchronous operation
 bsf TXSTA, TXEN ; Transmit enabled
 bsf TXSTA, BRGH ; High baud rate
 bsf TXSTA,TX9 ; Enable 9-bit send
 banksel PIE1 ; Enable the Timer2 interrupt
 bsf PIE1, TMR2IE
 bcf TRISC,RC6 ; Set RC6/TX to output Send Pin
 bsf TRISA,RA0 ; Set RA0 to input
 bsf TRISA,RA1 ; Set RA1 to input

 banksel INTCON ; Enable global and peripheral interrupts
 bsf INTCON, GIE
 bsf INTCON, PEIE
 movlw D'194' ; Set up the Timer2 Period register to get 50ms
 banksel PR2
 movwf PR2
 movlw B'01111110' ; Set up Timer2 postscale=1:16, prescaler=16
 banksel T2CON
 movwf T2CON

 banksel ADCON1
 movlw B'00000100' ; A/D data left justified, 3 analog channels AN0,
 ;AN1 and AN3
 ; VDD and VSS references
 banksel ADCON0 ; Select register bank 0
 movlw 0x02
 movwf Counter

 return

 47

;**
 Pressure_Conversion
 banksel ADCON0
 movlw B'01000001' ; Fosc/8, A/D Channel 0, A/D enabled
 movwf ADCON0
 bsf ADCON0, GO ; Start A/D conversion
Wait
 btfsc ADCON0,2 ; Wait for conversion to complete
 goto Wait
 movf ADRESH, W ; Get A/D result
 movwf Pressure_Reading
 return
;**
 Pressure_Test

 decfsz Counter,f ;Send first reading regardless of the
 goto Send ;value of the change in pressure
 movf Pressure_Result,w
 subwf Pressure_Reading,w ;Pressure_Reading - Pressure_Result
 movwf Difference
 sublw d'25' ; 25 - Difference
 btfsc STATUS,C
 goto Continue
Send
 movf ADRESH, W ; Get A/D result
 movwf Pressure_Result
 call Pressure_Transmision
Continue
 movlw 0x01
 movwf Counter

 return

;**
 Pressure_Transmision

 banksel TXSTA
 bcf TXSTA,TX9D ;9th bit of Transmit Data = 0
 banksel TXREG
 movf Pressure_Result,w
 movwf TXREG ; Send a pressure reading out the serial port
 banksel TXSTA
L1 btfss TXSTA,TRMT
 goto L1
 banksel ADCON0 ; Select register bank 0
 return
;***
Temperature_Conversion
 banksel ADCON0
 movlw B'01001001' ; Fosc/8, A/D Channel 1, A/D enabled
 movwf ADCON0
 bsf ADCON0, GO ; Start A/D conversion
Wait1
 btfsc ADCON0,2 ; Wait for conversion to complete
 goto Wait1

 48

 movf ADRESH, W ; Get A/D result
 movwf Temperature_Reading

 return
;**
; Interrupt Service Routine
; This routine is called whenever we get an interrupt.
IntService
 push

; btfsc PIR1, TMR2IF ; Check for a Timer2 interrupt

 banksel TXSTA
 bsf TXSTA,TX9D ;9th bit of Transmit Data = 1
 banksel TXREG
 movf Temperature_Reading,w
 movwf TXREG ; Send temperature reading out the serial port
 banksel TXSTA
L2 btfss TXSTA,TRMT
 goto L2
 banksel PIR1
 bcf PIR1, TMR2IF ; Clear the Timer2 interrupt flag

 pop

 retfie
;**
 end

 49

University of Jordan

School of Engineering

Department of Mechatronics Engineering

Microprocessor and Microcontroller Laboratory

0908432

Exp. 9: PWM

Objectives

1. To become familiar with Pulse Width Modulation in software.

2. To demonstrate the use of external interrupts linked with the port B on-change.

Pre-lab Preparation:

1. Review the sections in the book regarding PWM (Chapter 7).

2. Review the instruction set of the PIC 16F877.

3. Read the assembly program carefully.

Procedure:

 In this experiment, we are going to use four pushbuttons on the board connected with

the supply voltage to produce logic 1 (5Volt). Each pushbutton will set a different value that

used to pulse width modulate, a signal is connected to the light bulb on the board to get a

visual indication of the effect of the different values on the PWM signal.

Fig.1: - Switch connecting to PIC

 50

Fig.2: - PWM Flow Chart and Concept

 51

;**

; Lab10.asm

;This program operates a car lighting system using 4 pushbuttons

;Each pushbutton will set a different value that used to pulse width

;modulate

;pushbuttons are connected to the pins of port B (RB4-RB7).

; light bulb is connected to 6.

; The program uses a PIC16F877A running at crystal oscillator of

;frequency 4MHz.

;**

 include "p16f877A.inc"

;**

; Macro definitions

push macro

 movwf WTemp ; WTemp must be reserved in all banks

 swapf STATUS,W ; store in W without affecting status bits

 banksel StatusTemp ; select StatusTemp bank

 movwf StatusTemp ; save STATUS

 endm

pop macro

 banksel StatusTemp ; point to StatusTemp bank

 swapf StatusTemp,W ; unswap STATUS nibbles into W

 movwf STATUS ; restore STATUS

 swapf WTemp,F ; unswap W nibbles

 swapf WTemp,W ; restore W without affecting STATUS

 endm

;**

Sec_1 equ D'10' ; Number of centiseconds in a second

CountOuter0 equ D'10'

CountInner0 equ D'250'

;**

; User-defined variables

 cblock 0x20 ; bank 0 assignnments

 WTemp ; WTemp must be reserved in all banks

 StatusTemp

 PWM_Width

 52

 PWM_Period

 Counter

 BLNKCNT

 CountOuter

 CountInner

 endc

 cblock 0x0A0 ; bank 1 assignnments

 WTemp1 ; bank 1 WTemp

 endc

 cblock 0x120 ; bank 2 assignnments

 WTemp2 ; bank 2 WTemp

 endc

 cblock 0x1A0 ; bank 3 assignnments

 WTemp3 ; bank 3 WTemp

 endc

;**

; Start of executable code

 org 0x000

 nop

 goto Initial

;**

; Interrupt vector

 org 0x0004

 goto INT_SVC ; jump to the interrupt service

routine

;**

; Initial Routine

Initial

 banksel PORTC

 clrf PORTC ;Clear PORTC

 bsf INTCON,GIE ;Enable Global Interrupt

 bsf INTCON,RBIE ;Enable RB Port Change Interrupt

 banksel TRISC

 clrf TRISC ; All of the PORTC bits are outputs

 53

 movlw 0xF0

 movwf TRISB ;Set port B pins (RB0-RB3 outputs, RB4-Rb7

 ;inputs)

 banksel ADCON0 ; Select register bank 0

 clrf PWM_Width

 clrf PWM_Period

;**

; Main Routine

Main

 sleep

 comf PWM_Period

L1

 bsf PORTC,RC6 ;Set PWM signal to RC6

 clrf Counter

L2

 incf Counter,F

 movf PWM_Width,w

 subwf Counter,w

 btfsc STATUS,Z

 bcf PORTC,RC6 ;clear PWM signal from RC6

 movf PWM_Period,w

 subwf Counter,w

 btfsc STATUS,Z

 goto L1

 goto L2

;**

; Interrupt Service Routine

INT_SVC

 push

 call Duty_Select

 pop

 retfie

;**

; Duty_Select Routine

Duty_Select

 btfsc PORTB,RB4

 goto Duty_25

 54

 btfsc PORTB,RB5

 goto Duty_50

 btfsc PORTB,RB6

 goto Duty_75

 btfsc PORTB,RB7

 goto Duty_100

 goto Cont

Duty_25

 movlw d'64'

 movwf PWM_Width

 goto Cont

Duty_50

 movlw d'128'

 movwf PWM_Width

 goto Cont

Duty_75

 movlw d'192'

 movwf PWM_Width

 goto Cont

Duty_100

 movlw d'255'

 movwf PWM_Width

Cont

 call Delay

 movf PORTB,w

 bcf INTCON,RBIF

 return

;;;;;;; Delay subroutine ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; This subroutine to get a delay with 100 mSec.

Delay

Sec movlw Sec_1

 movwf BLNKCNT

TenMs

 movlw CountOuter0

 55

 movwf CountOuter

DecO

 movlw CountInner0

 movwf CountInner

DecI

 nop

 decfsz CountInner, F

 goto DecI

 decfsz CountOuter, F

 goto DecO

 decfsz BLNKCNT, F

 goto TenMs

 Return

;**

 end

 56

University of Jordan

School of Engineering

Department of Mechatronics Engineering

Microprocessor and Microcontroller Laboratory

0908432

Exp. 10: Interfacing with PIC

Objectives

1. Knowing the various modes of operation of the LCD (8-bit/4-bit interface, 2-lines/1-

line, CG-RAM

2. Distinguishing between the commands for the instruction register and data register.

3. To become familiar with keypad Interfacing and usage.

Introduction:

1- Liquid Crystal Displays (LCD)

What is an LCD?

A Liquid Crystal Displays (LCD) is a thin, flat display device made up of any number of

color or monochrome pixels arrayed in front of a light source or reflector. It is often utilized

in battery-powered electronic devices because it uses very small amounts of electric power.

LCDs can display numbers, letters, words, and a variety of symbols. This experiment teaches

you about LCDs which are based upon the Hitachi HD44780 controller chipset. LCDs come

in different shapes and sizes with 8, 16, 10, 24, 32, and 40 characters as standard in 1, 2 and

4–line versions. However, all LCD’s regardless of their external shape are internally

built as a 40x2 format. See Figure 2 below

Figure 1: A typical LCD module

 57

Figure 4: LCD Pinout

Figure 2: Different LCD modules shapes and sizes

Figure 3: Display address assignments for HD44780 controller-based LCDs

LCD I/O

Most LCD modules conform to a standard interface specification. A 14-pin access

is provided having eight data lines, three control lines and three power lines as shown

below. Some LCD modules have 16 pins where the two additional pins are typically

used for backlight purposes

Note: This image might differ from the actual

LCD module, the order can be from left to right

or vice versa therefore you should pay

attention, pin 1 is marked to avoid confusion

(printed on one of the pins).

Powering up the LCD requires connecting

three lines: one for the positive power Vdd

(usually +5V), one for negative power (or

ground) Vss. The Vee pin is usually connected

to a potentiometer which is used to vary the
contrast of the LCD display. We will connect
this pin to the GND.

As you can see from the figure, the LCD connects to the microcontroller through three

control lines: RS, RW and E, and through eight data lines D0-D7.

 58

With 16-pin LCDs, you can use the L+ and L- pins to turn the backlight (BL) on/off.

Table1: LCD pin-out details

 Pin No. Pin Name Pin Type Pin Description Pin Connection

Pin 1 Ground Source Pin
This is a ground pin of

LCD

Connected to the ground of the

MCU/ Power source

Pin 2 VCC Source Pin
This is the supply voltage

pin of LCD

Connected to the supply pin of

Power source

Pin 3 V0/VEE Control Pin
Adjusts the contrast of the

LCD.

Connected to a variable POT that

can source 0-5V

Pin 4 Register Select Control Pin
Toggles between

Command/Data Register

Connected to a MCU pin and gets

either 0 or 1.

0 -> Command Mode

1-> Data Mode

Pin 5 Read/Write Control Pin
Toggles the LCD between

Read/Write Operation

Connected to a MCU pin and gets

either 0 or 1.

0 -> Write Operation

1-> Read Operation

Pin 6 Enable Control Pin

Must be held high to

perform Read/Write

Operation

Connected to MCU and always

held high.

Pin 7-14 Data Bits (0-7)
Data/Command

Pin

Pins used to send

Command or data to the

LCD.

In 4-Wire Mode

Only 4 pins (0-3) is connected to

MCU

In 8-Wire Mode

All 8 pins (0-7) are connected to

MCU

Pin 15 LED Positive LED Pin

Normal LED like

operation to illuminate the

LCD

Connected to +5V

Pin 16 LED Negative LED Pin

Normal LED like

operation to illuminate the

LCD connected with

GND.

Connected to ground

Sending Commands/Data to the LCD

Using an LCD is a simple procedure once you learn it. Simply put you will place a value on

the LCD lines D0-D7(this value might be an ASCII value (character to be displayed), or

another hexadecimal value corresponding to a certain command). So how will the LCD

differentiate if this value on D0-D7 is corresponding to data or command?

 59

Observe the figure below, as you might see the only difference is in the RS signal (Register

Select), this is the only way for the LCD controller to know whether it is dealing with a

character or a command.

 Figure 5: Necessary control signals for Data/Commands

 Displaying Characters

All English letters and numbers

(as well as special characters,

Japanese and Greek letters) are

built in the LCD module in such

a way that it conforms to the

ASCII standard. To display a

character, you only need to send

its ASCII code to the LCD which

it uses to display the character.

To display a character on the

LCD simply move the ASCII

character to the working register

(for this experiment) then call

send_char subroutine.

Notice that from column 1

to D, the character resolution is

5 pixels wide x 7 pixels high

(5x7) (column 0 is a special case,

it is 1x8, but considered as 5x7,

more on this later) whereas the

character resolution of columns

E and F is 5 pixels wide x 10

pixels high (5x10).

Figure6: Correspondence between Character Codes and

Character Patterns (ROM Code: A00)

 60

Figure 7: LCD command control codes

Set CG-RAM Address command Syntax: 01AAAAAA

If you give a closer look at Figure 6, you will clearly see that the table only contains English

and Japanese characters, numbers, symbols as well as special characters! Suppose now that

you would like to display a character not found in the built-in table of the LCD (i.e. an

Arabic Character). In this case we will have to use what is called the CG-RAM (Character

Generation RAM), which is a reserved memory space in which you could draw your own

characters and later display them.

Observe column one in Figure 6, the locations inside this column are reserved for the CG-

RAM. Even though you see 16 locations (0 to F), you only have the possibility to use the

first 8 locations 0 to 7 because locations 8 to F are mirrors of locations 0 – 7.

So, to organize things, to use our own characters, we must do the following:

1. Draw and store our own defined characters in CG-RAM

2. Display the characters on the LCD screen as if it were any of the other characters in

the table

Drawing and storing our own defined characters in CG-RAM

As stated earlier, we have eight locations to store our characters in. So how do we choose

which location out of these to start drawing and building our characters in?

The answer is quite simple; follow this rule as stated in the datasheet of the HD44780

controller

1. To write (build/store a character in location 00 (crossing of the row and column)), you

send the CG-RAM address command as follows: 01AAAAAA → 01000000 → 0x40

2. However, to write in any location from 01 to 07, you must skip eight locations So,

the CG-RAM address command will send 0x48 (to store a character in location 1),

0x50 (to store a character in location 2) and so on...

 61

So up to this point we have defined where to write our characters but not how to build

them. Draw a 5x8 Grid and start drawing your character inside, then replace each shaded

cell with one and not shaded ones with zero.

Append three zeros to the left (B5-B7) and finally transform the sequence into

hexadecimal format. This is the sequence which you will fill in the CG-RAM

SEQUENTIALLY once you have set the CG-RAM Address before.

Figure 8: CG-RAM drawing example

Displaying the user generated (drawn) characters on the LCD screen

Simply, if we stored our character in location 0, we move 0 to the working register then

issue the “call send_char” command, if we stored it in location 2, move 2 to the working

register and so on ….

 62

2- Keypad

Basic Keypad Theory

Keypads are essentially large switch arrays which allow data entries (numeric or

alphanumeric) into systems. Keypads are widely used in everyday applications such as burglar

alarms, cell phones and photocopiers. Keypads come in different shapes and sizes with 4x3,

4x4 buttons as common examples. It is not practical to connect each button in the keypad to

its own port input as we previously did with switch and push buttons; therefore, keypads are

normally constructed in a matrix format. An (n x m)

Figure 9: A 4x4 keypad

General Keypad Operation

In general, a keypad is interfaced in a way such that initially if no key is pressed you will read a
certain logic level and when you press a button a signal with the negative of the original level
will be read. You have two cases:
1. Fix the initial button state to be read as logic 1 (using pull-up resistors), when you press a
button you will read logic 0.

2. Fix the initial button state to be read as logic 0 (using pull-down resistors), when you press a
button you will read logic 1.

• Pull-up and pull-down resistors are used to limit the amount of current and protect the
circuit. (not to read a floating state)

• Pull-up and pull-down resistors are normally connected externally, BUT you can make
use of the internal pull-up resistors found in Microchip’s PIC devices such as those in
implemented in PORTB. In this experiment we will use the internal pull-up resistors.

Whether you use internal or external pull-up resistors the keypad will operate in the same way.

 63

Technique

**It does not matter whether you start scanning rows or columns first it depends on your

connections; the basic idea is the logic of the scanning technique is the same.

First the row bits are set to output, with the column bits as input. The output rows are set to

logic 0. If no button is pressed all column line inputs will be read as logic 1 due to the action

of the pull-up resistors. If, however, a button is pressed then its corresponding switch will

connect column and row lines, and the corresponding column line will be read as low.

To detect this logic transition from high to low (that is to know whether a key has been pressed

or not), we must either:

1. Keep pulling the inputs (columns) continuously until 0 is detected.

2. Make use of the interrupt (Here PORTB interrupt- on change will be beneficial)

Yet still, we have identified the column in which the key was pressed but not the button itself.

So, what we do now is save the column and repeat the same procedure above with the

following minor modification:

Secondly the column bits are set to output, with the row bits as input. The output columns

are set to logic 0. Since the button is still pressed then its corresponding switch is still

connecting column and row lines, and the corresponding row line will be read as low. If,

however, the button is released all row line inputs will be read as logic 1 due to the action of

the pull-up resistors. Now we have identified the row

Example

Suppose we connect the columns to PORTB 4-7 as

input and the rows to PORTB 0-3 as output (with the

value of 0). If we continuously read the inputs they

will always be read as 1 because of the internal pull-

up resistors on PORTB. If one presses number “7”,

this will make us read logic 0 on RB4 (identified that

we have pressed a button in the first column).

Now let us exchange the inputs for the outputs, that is

we connect the rows to PORTB 4-7 as input and the

columns to PORTB 0-3 as output (with the value of

0).

If we read the input, we will find that RB2 is 0. Now

we have identified the location of the pressed button

and ready to process what it means.

So, what comes next?

The above scanning technique let us know the

position of the pressed button (in terms of its

row/column intersection) but not the value

corresponding to the button. So obviously the next

step is to use the location to retrieve the desired value.

 64

Table 2 - The values which will be read when a key is pressed

Most often, you will need to display the number on a 7-segment display, LCD or use it in

binary calculations. Therefore, it is natural to build a look-up table with the 7-segment

representations, ASCII code or binary equivalent and use the location pattern which you saved

(as in the table above) as an index to the look-up table.

The way one organizes the look-up table entries differs from one person to another, therefore

there is no specific way to translate the locations to their corresponding values. One might

use a series of btfsc or btfss instructions or deduce a relationship and use mathematical

operations or a combination of both.

What have we done in this experiment?
Study the following flowchart which (in the next page) is based on the table above.

1. If the key pressed is in column 1, then X might take the values 0, 1, 2, 3

2. If the key pressed is in column 2, then X might take the values 4, 5, 6, 7

3. If the key pressed is in column 3, then X might take the values 8, 9, 10, 11

4. If the key pressed is in column 4, then X might take the values 12, 13, 14, 15

These values will be added to PCL to retrieve values from the look-up table.

Key

pressed

Column

RB7, RB6, RB5, RB4

Row

RB3, RB2, RB1, RB0

Look-up table

index

1 1110 1110

0 0 +0

4 1110 1101 1 0+1

7 1110 1011 2 0+2

A 1110 0111 3 0+3

2 1101 1110

4 4+0

5 1101 1101 5 4+1

8 1101 1011 6 4+2

0 1101 0111 7 4+3

3 1011 1110

8 8+0

6 1011 1101 9 8+1

9 1011 1011 10 8+2

B 1011 0111 11 8+3

F 0111 1110

12 12+0

E 0111 1101 13 12+1

D 0111 1011 14 12+2

C 0111 0111 15 12+3

 65

 66

;***
*
; Example Code
;***
*
; Function:
;
;
; Connections:
; Input:
; Keypad Row 1: RB0
; Keypad Row 2: RB1
; Keypad Row 3: RB2
; Keypad Row 4: RB3
; Keypad Col 1: RB4
; Keypad Col 2: RB5
; Keypad Col 3: RB6
; Keypad Col 4: RB7
; LCD Control:
; RA1: RS (Register Select)
; RA3: E (LCD Enable)
; LCD Data:
; PORTD 0-7 to LCD DATA 0-7 for sending commands/characters
; Notes:
; The RW pin (Read/Write) - of the LCD - is connected to RA2
; The BL pin (Back Light) – of the LCD – is connected potentiometer
; Output:
; 7-Segment A-G: PORTC 0-6
; 7-Segment Digit Enable 1: Connected To RA0 On Board

__CONFIG
_DEBUG_OFF&_CP_OFF&_WRT_HALF&_CPD_OFF&_LVP_OFF&_BODEN_OFF&_PWRTE_OFF&_WDT_OFF&_X
T_OSC
;***
*
#INCLUDE "P16F877A.INC"

CBLOCK 0x20
DELCNTR1 ; Used in generating 10 ms delay
DELCNTR2
KPAD_PAT ; Holds the pattern retrieved from keypad
KPAD_ADD ; Holds keypad address to lookup table (generated from
 ; KPAD_PAT to get KPAD_CHAR)
KPAD_CHAR ; Holds the 7-segment representation of the most recent
 ; character pressed on keypad
;tempChar
;charCount
lsd ;lsd and msd are used in delay loop calculation
msd
ENDC
;***
*
Zero equ B'00111111' ; 7-Segment Code for Zero
One equ B'00000110' ; 7-Segment Code for One
Two equ B'01011011' ; 7-Segment Code for Two
Three equ B'01001111' ; 7-Segment Code for Three
Four equ B'01100110' ; 7-Segment Code for Four
Five equ B'01101101' ; 7-Segment Code for Five
Six equ B'01111101' ; 7-Segment Code for Six
Seven equ B'00000111' ; 7-Segment Code for Seven
Eight equ B'01111111' ; 7-Segment Code for Eight
Nine equ B'01101111' ; 7-Segment Code for Nine

 67

LetterA equ B'01110111' ; 7-Segment Code for A
LetterB equ B'01111100' ; 7-Segment Code for B
LetterC equ B'01011000' ; 7-Segment Code for C
LetterD equ B'01011110' ; 7-Segment Code for D
LetterE equ B'01111001' ; 7-Segment Code for E
LetterF equ B'01110001' ; 7-Segment Code for F
;***
; START OF EXECUTABLE CODE
;***
 ORG 0x00
 GOTO INITIAL
;***
; INTERRUPT VECTOR
;***
 ORG 0x04
 GOTO KPAD_TO_7SEG
;***
INITIAL
 BANKSEL TRISA
 CLRF TRISA
 CLRF TRISD
 CLRF TRISC
 MOVLW B'11110000' ; PORTB initially row bits as output, column
 ;as input
 MOVWF TRISB
 BCF OPTION_REG, NOT_RBPU ; Turn on all internal pull-ups of PORTB

 BANKSEL ADCON1
 MOVLW 0X06
 MOVWF ADCON1 ;set PORTA as general Digital I/O PORT

 BANKSEL PORTB
 CLRF PORTB
 movlw Zero ; Send Zero to output
 movwf PORTC
 BSF PORTA,RA0
 BCF INTCON, RBIF ; Initialize and enable port-on-change
 BSF INTCON, RBIE ; interrupt
 BSF INTCON, GIE
;Initialize LCD
 Movlw 0x38 ;8-bit mode, 2-line display, 5x7 dot format
 Call send_cmd
 Movlw 0x0e ;Display on, Cursor Underline on, Blink off
 Call send_cmd
 Movlw 0x02 ;Display and cursor home
 Call send_cmd
 Movlw 0x01 ;clear display
 Call send_cmd
 call DrawStick1
 Call DrawStick2
 Movlw 0x01 ;clear display
 Call send_cmd
;***

call delay
Movlw a'A'
 Call send_char

 68

Main

 movf KPAD_CHAR,w
 sublw One
 btfsc STATUS,Z
 call Page1
 movf KPAD_CHAR,w
 sublw Two
 btfsc STATUS,Z
 call Page2
 movf KPAD_CHAR,w
 sublw Three
 btfsc STATUS,Z
 call Page3

 goto Main ;Do it again
;***
DrawStick1 ; Setting the CGRAM address at which we draw the
stick man
 Movlw 0x40 ; Here it is address 0x00
 Call send_cmd
 Movlw 0X0E ; Sending data that implements the Stick man
 Call send_char
 Movlw 0X11
 Call send_char
 Movlw 0X0E
 Call send_char
 Movlw 0X04
 Call send_char
 Movlw 0X1F
 Call send_char
 Movlw 0X04
 Call send_char
 Movlw 0X0A
 Call send_char
 Movlw 0X11
 Call send_char
 Return

;***

DrawStick2 ; Setting the CGRAM address at which we draw the
stick man
 Movlw 0x48 ; Here it is address 0x01
 Call send_cmd
 Movlw 0X0E ; Sending data that implements the Stick man
 Call send_char
 Movlw 0X0A
 Call send_char
 Movlw 0X04
 Call send_char
 Movlw 0X15
 Call send_char
 Movlw 0X0E
 Call send_char
 Movlw 0X04
 Call send_char
 Movlw 0X0A
 Call send_char
 Movlw 0X0A
 Call send_char
 Return

 69

;***
Page1
 Movlw 0x88 ;Set display address
 Call send_cmd
 Movlw 0x00
 Call send_char
 Movlw 0x88 ;Set display address
 Call send_cmd
 call delay
 call delay
 Movlw 0x01
 Call send_char
 return
Page2

 Movlw 0x01 ;clear display
 Call send_cmd
Movlw 0x02 ;Display and cursor home
 Call send_cmd
return
Page3

 Movlw 0x01
 Call send_char
 call delay
 call delay
 Movlw 0x00
 Call send_char
 return
;***
send_cmd
 movwf PORTD ; Refer to table 1 on Page 5 for review of this subroutine
 bcf PORTA,RA1
 bsf PORTA,RA3
 nop
 bcf PORTA,RA3
 bcf PORTA,RA2
 call delay
 return
;***
send_char

movwf PORTD ; Refer to table 1 on Page 5 for review of this subroutine
 bsf PORTA,RA1
 bsf PORTA,RA3
 nop
 bcf PORTA,RA3
 bcf PORTA,RA2
 call delay
 return
;***
delay
 movlw 0x80
 movwf msd
 clrf lsd
loop2
 decfsz lsd,f
 goto loop2
 decfsz msd,f
endLcd
 goto loop2
 return

 70

;***
; INTERRUPT SERVICE ROUTINE.
;***
; Keypad press has been detected. Does the following:
;1. Solves de-bouncing through software delay
;2. Gets keypad pattern (location of the pressed button)
;3. Converts location to table index
;4. Access look-up table with index, gets 7-seg. Code, display on 7-segment.
;5. Solves the port-on-change interrupt when button is released (2nd call delay):
;The code will enter the interrupt service routine two times for the same ;button,
;once when the button is pressed (change from 1 to 0), another when ;the button
;is released (change from 0 to 1),
;therefore we insert the second delay such that the action of pressing/releasing
;the button will occur inside ;the interrupt routine,
;and when it happens we will clear the flag only once ;and not enter the subroutine
;again for the release action.
;***
KPAD_TO_7SEG
 CALL DELAY
 CALL KPAD_RD
 CALL KP_CODE_CONV
 CALL DELAY
 MOVF PORTB, W ; READ PORTB VALUE.
 BCF INTCON, RBIF ; CLEAR INTERRUPT FLAG
 RETFIE

;***
; Function:
; Gets the coordinates of the pressed keypad button and stores it
; Input:
; Nibble Values from PORTB: initially high nibble of PORTB then low nibble
; Output:
; Pressed button coordinates in the matrix in the form {Column, row} store in
; KPAD_PAT
; REFER TO THE FLOWCHART ON PAGE 3 TO FULLY UNDERSTAND HOW THIS
; SUBROUTINE WORKS
;***
KPAD_RD
 MOVF PORTB,W ; Read Column
 ANDLW B'11110000' ; Ensure unwanted bits are suppressed
 MOVWF KPAD_PAT
 BSF STATUS, RP0 ; Set row as input, column as output.
 MOVLW B'00001111'
 MOVWF TRISB
 BCF STATUS, RP0
 CLRF PORTB ; Send Zero to output
 MOVF PORTB, W ; Read Row
 ANDLW B'00001111' ; Ensure unwanted bits are suppressed
 IORWF KPAD_PAT, 1
 BSF STATUS, RP0
 MOVLW B'11110000' ; Restore row as output, column as input
 MOVWF TRISB
 BCF STATUS, RP0
 CLRF PORTB ; Send Zero to output
 RETURN
;***
; Function:
; Converts keypad pattern held in KPAD_PAT to an index KPAD_ADD which we use
; to access the look-up table.
; INPUT:
; KPAD_PAT which holds the location in terms of {Column,Row} of the pressed
; key

 71

; OUTPUT:
; A value in KPAD_ADD in the range of 0 to 15 which is the index to be used in the
; look-up table
; REFER TO THE FLOWCHART ON PAGE 5 TO FULLY UNDERSTAND HOW THIS
; SUBROUTINE
;***
KP_CODE_CONV
 CLRF KPAD_ADD ; Initially Base index is 0
KP0 BTFSC KPAD_PAT, 4 ; Is Column1?
 GOTO KP1
 GOTO ROW_FIND
KP1 BTFSC KPAD_PAT, 5 ; Is Column2?
 GOTO KP2
 MOVLW B'00000100' ; Base index is 4
 ADDWF KPAD_ADD, 1
 GOTO ROW_FIND
KP2 BTFSC KPAD_PAT, 6 ; Is Column3?
 GOTO KP3
 MOVLW B'00001000' ; Base index is 8
 ADDWF KPAD_ADD, 1
 GOTO ROW_FIND
KP3
 BTFSC KPAD_PAT, 7 ; Is Column4?
 GOTO KEEP ; If no button was pressed, display last
 ; character on 7-segment display
 MOVLW B'00001100' ; Base index is 12
 ADDWF KPAD_ADD, 1

ROW_FIND
 BTFSC KPAD_PAT, 0 ; Is Row1?
 GOTO RF1
 GOTO KEYPAD_OP
RF1 BTFSC KPAD_PAT, 1 ; Is Row2?
 GOTO RF2
 MOVLW B'00000001' ; Add 1 to the base index
 ADDWF KPAD_ADD, 1
 GOTO KEYPAD_OP

RF2 BTFSC KPAD_PAT, 2 ; Is Row3?
 GOTO RF3
 MOVLW B'00000010' ; Add 2 to the base index
 ADDWF KPAD_ADD, 1
 GOTO KEYPAD_OP

RF3 BTFSC KPAD_PAT, 3 ; Is Row4?
 GOTO KEEP ; If no button was pressed, display last
 ; character on 7-segment
display
 MOVLW B'00000011' ; Add 3 to the base index
 ADDWF KPAD_ADD, 1
KEYPAD_OP
 MOVF KPAD_ADD, 0
 CALL KP_TABLE ; Access table with index
 MOVWF KPAD_CHAR ; Save character
 MOVWF PORTC ; Display Character
 GOTO FIN
KEEP
 MOVF KPAD_CHAR, W
 MOVWF PORTC ; If no button was pressed, display last
 ; character on 7-segment
display
FIN RETURN

 72

;***
; This table contains the common cathode 7-segment representations of the numbers
; 0 to 9 and the characters ‘A’ to ‘f’ found on the keypad.
;As seen below, the table lists the numbers in the order Col1, Col2 and son on.
;***
KP_TABLE
 ADDWF PCL,1
 RETLW One ;'1' COLUMN1
 RETLW Four ;'4'
 RETLW Seven ;'7'
 RETLW LetterA ;'A'
 RETLW Two ;'2' COLUMN2
 RETLW Five ;'5'
 RETLW Eight ;'8'
 RETLW Zero ;'0'
 RETLW Three ;'3' COLUMN3
 RETLW Six ;'6'
 RETLW Nine ;'9'
 RETLW LetterB ;'B'
 RETLW LetterF ;'F' COLUMN4
 RETLW LetterE ;'E'
 RETLW LetterD ;'D'
 RETLW LetterC ;'C'
;***
; Delay subroutine
; Delay of approx. 10ms which is more than enough for de-bouncing
;***
DELAY
 MOVLW 0X20
 MOVWF DELCNTR1
 CLRF DELCNTR2
LOOP2
 DECFSZ DELCNTR2,F
 GOTO LOOP2
 DECFSZ DELCNTR1,F
ENDLCD
 GOTO LOOP2
 RETURN
 END
;***

